The weak limit of Ising models on locally tree-like graphs
نویسندگان
چکیده
We consider the Ising model with inverse temperature β and without external field on sequences of graphs Gn which converge locally to the k-regular tree. We show that for such graphs the Ising measure locally weak converges to the symmetric mixture of the Ising model with + boundary conditions and the − boundary conditions on the k-regular tree with inverse temperature β. In the case where the graphs Gn are expanders we derive a more detailed understanding by showing convergence of the Ising measure condition on positive magnetization (sum of spins) to the + measure on the tree.
منابع مشابه
Ferromagnetic Ising Measures on Large Locally Tree-like Graphs by Anirban Basak
We consider the ferromagnetic Ising model on a sequence of graphs Gn converging locally weakly to a rooted random tree. Generalizing [Probab. Theory Related Fields 152 (2012) 31–51], under an appropriate “continuity” property, we show that the Ising measures on these graphs converge locally weakly to a measure, which is obtained by first picking a random tree, and then the symmetric mixture of ...
متن کاملar X iv : h ep - l at / 9 70 40 20 v 1 3 0 A pr 1 99 7 Potts Models on Feynman Diagrams
We investigate numerically and analytically Potts models on " thin " random graphs – generic Feynman diagrams, using the idea that such models may be expressed as the N → 1 limit of a matrix model. The thin random graphs in this limit are locally tree-like, in distinction to the " fat " random graphs that appear in the planar Feynman diagram limit, N → ∞, more familiar from discretized models o...
متن کاملIsing models on locally tree-like graphs
We consider Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the ‘cavity’ prediction for the limiting free energy per spin is correct for any temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) ...
متن کاملFactor models on locally tree-like graphs
We consider homogeneous factor models on uniformly sparse graph sequences converging locally to a (unimodular) random tree T , and study the existence of the free energy density φ, the limit of the log-partition function divided by the number of vertices n as n tends to infinity. We provide a new interpolation scheme and use it to prove existence of, and to explicitly compute, the quantity φ su...
متن کاملLatent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs
Graphical model selection refers to the problem of estimating the unknown graph structure given observations at the nodes in the model. We consider a challenging instance of this problem when some of the nodes are latent or hidden. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider the class of Ising models Markov on loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009